22. Затухающие колебания.

Затухание колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются линейными дифференциальными уравнениями.

Различные по своей природе линейные системы описываются одинаковыми уравнениями, что позволяет осуществлять единый подход к изучению колебаний различной физической природы.

23. Дифференциальное уравнение свободных затухающих колебаний линейной системы.

Дифференциальное уравнение свободных затухающих колебаний линейной системы имеет вид

\[
\frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_0^2 s = 0
\]

где \(s\) — колеблющаяся величина,
\(\delta = \text{const} — \text{коэффициент затухания},\)
\(\omega_0\) — циклическая частота свободных незатухающих колебаний той же колебательной системы (при \(\delta = 0\)).

В случае малых затуханий \((\delta^2 \ll \omega_0^2)\) решение этого уравнения:

\[s = A_0 e^{-\delta t} \cos(\omega t + \varphi)\]

где:

\[A = A_0 e^{-\delta t} — \text{амплитуда затухающих колебаний},\]
\[A_0 — \text{начальная амплитуда},\]
\[\omega = \sqrt{\omega_0^2 - \delta^2} — \text{циклическая частота затухающих колебаний}.\]

Промежуток времени \(\tau = \frac{1}{\delta}\), в течение которого амплитуда затухающих
колебаний уменьшаются в e раз называется временем релаксации.
Затухание нарушает периодичность колебаний.
Затухающие колебания не являются периодическими.
Однако если затухание мало, то можно условно пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины:

$$ T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}} $$

24. Декремент затухания.
Если $A(t)$ и $A(t + T)$ — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

$$ \frac{A(t)}{A(t + T)} = e^{\delta T} $$

называется декрементом затухания, а его логарифм

$$ \theta = \ln \frac{A(t)}{A(t + T)} = \delta T = \frac{T}{\tau} = \frac{1}{N} $$

называется логарифмически декрементом затухания.
Здесь N — число колебаний, совершаемых за время уменьшения амплитуды в e раз.

25. Добротность колебательной системы.
Добротностью колебательной системы называется безразмерная величина Q, равная произведению 2π на отношение энергии $W(t)$ колебаний системы в произвольный момент времени t к убыли этой энергии за промежуток времени от t до $t + T$ (за один условный период затухающих колебаний):

$$ Q = 2\pi \frac{W(t)}{W(t) - W(t + T)} $$

Энергия $W(t)$ пропорциональна квадрату амплитуды $A(t)$, поэтому:

$$ Q = 2\pi \frac{A^2(t)}{A^2(t) - A^2(t + T)} = \frac{2\pi}{1 - e^{-2\delta T}} = \frac{2\pi}{1 - e^{-2\theta}} $$

При малых значениях логарифмического декремента затухания ($\theta << 1$)

$$ 1 - e^{-2\theta} \approx 2\theta $$, поэтому (принимая $T = T_0$)

$$ Q = \frac{\pi}{\theta} = \pi N = \frac{\pi}{\delta \cdot T} = \frac{\omega_0}{2\delta} $$
26. Примеры свободных затухающих колебаний

Рассмотрим затухающие колебания различных физической природы:

1) механические колебания — пружинный маятник с массой \(m \), который совершает малые колебания под действием упругой силы \(F = -kx \) и силы трения \(F_{пр} = -r\dot{x} \) (\(r \) — коэффициент сопротивления)

2) электромагнитные колебания — колебания в колебательном контуре состоящем из сопротивления \(R \), индуктивности \(L \) и емкости \(C \). Будем сравнивать оба случая с дифференциальным уравнением свободных затухающих колебаний линейной системы

\[
\ddot{s} + 2\delta \dot{s} + \omega_0^2 s = 0
\]

<table>
<thead>
<tr>
<th>Колеблющаяся величина</th>
<th>1) пружинный маятник</th>
<th>2) колебательный контур</th>
</tr>
</thead>
<tbody>
<tr>
<td>Смещение относительно положения равновесия (x)</td>
<td>(\ddot{x} + \frac{r}{m} \dot{x} + \frac{k}{m} x = 0)</td>
<td>(\ddot{q} + \frac{R}{L} \dot{q} + \frac{1}{LC} q = 0)</td>
</tr>
<tr>
<td>Частота незатухающих колебаний (\omega_0)</td>
<td>(\omega_0 = \sqrt{\frac{k}{m}})</td>
<td>(\omega_0 = \frac{1}{\sqrt{LC}})</td>
</tr>
<tr>
<td>Коэффициент затухания (\delta)</td>
<td>(\delta = \frac{r}{2m})</td>
<td>(\delta = \frac{R}{2L})</td>
</tr>
<tr>
<td>Частота затухающих колебаний</td>
<td>(\omega = \sqrt{\omega_0^2 - \delta^2})</td>
<td>(\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}})</td>
</tr>
<tr>
<td>Добротность (Q)</td>
<td>(Q = \frac{\sqrt{km}}{r})</td>
<td>(Q = \frac{1}{R \sqrt{C}})</td>
</tr>
<tr>
<td>Закон колебаний</td>
<td>(x = A_0 e^{-\delta t} \cos(\omega t + \varphi))</td>
<td>(q = q_0 e^{-\delta t} \cos(\omega t + \varphi))</td>
</tr>
</tbody>
</table>

27. Вынужденные колебания.

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора \(X(t) \), изменяющегося по гармоническому закону:

\[
X(t) = X_0 \cos \omega t
\]
В случае механических колебаний таким фактором является
вынуждающая сила $F = F_0 \cos \omega t$. Закон движения для пружинного маятника
будет иметь вид

$$m \ddot{x} = -kx - r \dot{x} + F_0 \cos \omega t$$

В случае электрического колебательного контура роль $X(t)$ играет
подводимая к контуру внешняя ЭДС или переменное напряжение
$U = U_m \cos \omega t$. Уравнение колебаний в контуре будет иметь вид

$$\ddot{q} + \frac{R}{L} \dot{q} + \frac{1}{LC} q = \frac{U_m}{L} \cos \omega t$$

В общем виде дифференциальное уравнение вынужденных
колебаний имеет вид

$$\ddot{s} + 2\delta \dot{s} + \omega_0^2 s = x_0 \cos \omega t$$

Это уравнение — линейное неоднородное дифференциальное уравнение.
Его решение равно сумме общего решения $s = A_0 e^{-\delta t} \cos(\omega t + \varphi)$ однородного
уравнения и частного решения неоднородного уравнения. Можно показать,
частное решение имеет вид

$$s = A \cos(\omega t + \varphi)$$

где A и φ задаются формулами

$$A = \frac{x_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}, \quad \varphi = \arctg \frac{2\delta \omega}{\omega_0^2 - \omega^2}$$

Так для электромагнитных колебаний, если обозначить α — сдвиг по
фазе между зарядом и приложенным напряжением, то можно показать, что
решение дифференциального уравнения будет иметь вид $q = q_m \cos(\omega t - \alpha)$,
где

$$q_m = \frac{U_m}{\omega \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}, \quad \tan \alpha = \frac{R}{\frac{1}{\omega C} - \omega L}$$

Сила тока при установившихся колебаниях:

$$I = \frac{dq}{dt} = -\omega q_m \sin(\omega t - \alpha) = I_m \cos(\omega t - \alpha + \frac{\pi}{2})$$

где

$$I_m = \omega q_m = \frac{U_m}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

Силу тока можно записать в виде $I = I_m \cos(\omega t - \varphi)$, где $\varphi = \alpha - \frac{\pi}{2}$ —
сдвиг по фазе между током и приложенным напряжением. Тогда можно
показать, что

$$\tan \varphi = \tan \left(\alpha - \frac{\pi}{2}\right) = -\frac{1}{\frac{1}{\omega C}} = \frac{\omega L - \frac{1}{\omega C}}{R}$$
28. Резонанс.

Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (или, в случае электрических колебаний, частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы.

Амплитуда вынужденных колебаний

\[A = \frac{x_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}} \]

имеет максимум при частоте \(\omega_{rez} = \sqrt{\omega_0^2 - 2\delta^2} \), которая называется резонансной частотой. (Первая производная знаменателя \((-4(\omega_0^2 - \omega^2)\omega + 8\delta^2 \omega = 0)\) обращается в нуль при \(\omega^2 = \omega_0^2 - 2\delta^2 \).)

\[A_{rez} = \frac{x_0}{2\delta \sqrt{\omega_0^2 - \delta^2}} \]

При \(\omega \to 0 \), амплитуда достигает предельного значения \(A_0 = \frac{x_0}{\omega_0^2} \), которое называется статическим отклонением. В случае механических колебаний \(A_0 = \frac{F_0}{m\omega_0^2} \). В случае электромагнитных колебаний: \(A_0 = \frac{U_m}{L\omega_0^2} \)

При \(\omega \to \infty \), амплитуда стремится к нулю.

В случае малого затухания, когда \(\delta^2 \ll \omega_0^2 \), резонансная амплитуда

\[A_{rez} = \frac{x_0}{2\delta \omega_0} = \frac{\omega_0 x_0}{2\delta \omega_0^2} = Q \cdot A_0 \]

где \(Q \) — добротность колебательной системы, \(A_0 \) — статическое отклонение. Таким образом, добротность характеризует резонансные свойства колебательной системы: чем больше \(Q \), тем больше \(A_{rez} \).

29. Переменный ток.

Переменным током называются вынужденные колебания тока в цепи, совпадающие с частотой вынуждающей ЭДС.

Пусть переменная ЭДС (или переменное напряжение) имеет вид

\[U = U_m \cos \omega t \]

где \(U_m \) — амплитуда напряжения.

Тогда на участке цепи, имеющей сопротивление \(R \), емкость \(C \) и индуктивность \(L \), закон Ома будет иметь вид

\[\dot{q} + \frac{R}{L} \dot{q} + \frac{1}{LC} \dot{q} = \frac{U_m}{L} \cos \omega t \quad \text{или} \quad \frac{dI}{dt} + IR + \frac{q}{C} = U_m \cos \omega t \]

5
Рассмотрим частные случаи цепи.

(1) \(R \neq 0, \quad C \to 0, \quad L \to 0 \): переменное напряжение приложено к сопротивлению \(R \). Закон Ома:

\[
I = \frac{U}{R} = \frac{U_m \cos \omega t}{R} = I_m \cos \omega t
\]

Амплитуда силы тока \(I_m = \frac{U_m}{R} \).

Колебания тока происходят в одной фазе с напряжением.

Для наглядности воспользуемся методом векторных диаграмм и будем изображать векторами, угол между которыми равен разности фаз.

(2) \(R \to 0, \quad C \to 0, \quad L \neq 0 \): переменное напряжение приложено к катушке индуктивности.

ЭДС самоиндукции в катушке: \(\Theta_s = -L \frac{dI}{dt} \).

Закон Ома: \(L \frac{dI}{dt} = U_L = U_m \cos \omega t \), откуда после интегрирования получим

\[
I = \frac{U_m}{\omega L} \sin \omega t = I_m \cos \left(\omega t - \frac{\pi}{2} \right)
\]

где \(I_m = \frac{U}{\omega L} \).

Таким образом, падение напряжения \(U_L \) опережает по фазе ток \(I \), текущий через катушку, на \(\frac{\pi}{2} \).

Величина \(R_L = \omega L \) называется реактивным индуктивным сопротивлением. Для постоянного тока (\(\omega = 0 \)) катушка индуктивности не имеет сопротивления.

(3) \(R \to 0, \quad C \neq 0, \quad L \to 0 \): переменное напряжение приложено к конденсатору.

\[
\frac{q}{C} = U_C = U_m \cos \omega t
\]

Сила тока

\[
I = \frac{dq}{dt} = -\omega C U_m \sin \omega t = I_m \cos \left(\omega t + \frac{\pi}{2} \right)
\]

где \(I_m = \omega C U_m = \frac{U_m}{\frac{1}{\omega C}} \).

Таким образом, падение напряжения \(U_C \) отстает по фазе от текущего через конденсатор тока \(I \) на \(\frac{\pi}{2} \).
Величина

\[R_C = \frac{1}{\omega C} \]

называется **реактивным емкостным сопротивлением**. Для постоянного тока (\(\omega = 0 \)) \(R_C = \infty \), т.е. постоянный ток через конденсатор течь не может.

(4) В общем случае \(R \neq 0, \ C \neq 0, \ L \neq 0 \). Если напряжение в цепи изменяется по закону \(U = U_m \cos \omega t \), то в цепи течет ток

\[I = I_m \cos(\omega t - \varphi) \]

где \(I_m \) и \(\varphi \) определяются формулами

\[I_m = \frac{U_m}{\sqrt{R^2 + \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)^2}} \]

\[\tan \varphi = \frac{\omega L - \frac{1}{\omega C}}{R} \]

Величина

\[Z = \sqrt{R^2 + \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)^2} = \sqrt{R^2 + (R_L - R_C)^2} \]

называется **полным сопротивлением цепи**.

Величина: \(X = R_L - R_C = \omega L - \frac{1}{\omega C} \)

называется **реактивным сопротивлением**.

Таким образом: \(I_m = \frac{U_m}{Z} \), \(\tan \varphi = \frac{X}{R} \), причем \(\cos \varphi = \frac{R}{Z} \), \(\sin \varphi = \frac{X}{Z} \).
30. Резонанс напряжений.
Если \(\omega L = \frac{1}{\omega C} \), то \(\varphi = 0 \) — изменения тока и напряжения происходят синфазно. В этом случае \(Z = R \) и ток определяется только активным сопротивлением и достигает максимально возможного значения. Падение напряжения на конденсаторе \(U_C \) и на катушке индуктивности \(U_L \) одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений (последовательным резонансом).
Частота
\[
\omega_{рез} = \frac{1}{\sqrt{LC}}
\]
называется резонансной.

31. Резонанс токов.
К цепи переменного тока, содержащей параллельно включенные конденсатор емкостью \(C \) и катушку индуктивностью \(L \), приложено напряжение \(U = U_m \cos \omega t \).
Токи в ветвях 1C2 \((R = 0, L = 0)\) и 1L2 \((R = 0, C = \infty)\) равны
\[
I_{m1} = \frac{U_m}{\omega C}, \quad I_{m2} = \frac{U_m}{\omega L}
\]
и противоположны по фазам. Амплитуда силы тока во внешней (неразветвленной) цепи
\[
I_m = |I_{m1} - I_{m2}| = U_m \left| \frac{C}{\omega C} - \frac{L}{\omega L} \right|
\]
Если \(\omega = \omega_{рез} = \frac{1}{\sqrt{LC}} \), то \(I_{m1} = I_{m2} \) и \(I_m = 0 \). Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты \(\omega \) приложенного напряжения к резонансной частоте \(\omega_{рез} \) называется резонансом токов (параллельным резонансом).
В реальных цепях \(R \neq 0 \), поэтому сила тока \(I_m > 0 \), но принимает наименьшее возможное значение.

32. Действующее значение переменного тока.
Действующим или эффективным значением переменного тока \(I = I_0 \cos \omega t \) называется среднее квадратическое значение силы тока за период \(T \) его изменения:
\[
I_{эфф} = \frac{1}{T} \int_0^T I^2(t)dt = \frac{I_0}{\sqrt{2}}, \quad \text{поскольку} \langle \cos^2 \omega t \rangle = \frac{1}{2}
\]
Аналогично, действующее значение напряжения: \(U_{эфф} = \frac{U_0}{\sqrt{2}} \)
33. Мощность, выделяемая в цепи переменного тока.

Мгновенная мощность тока в цепи:

\[P(t) = U(t)I(t) = U_m \cos \omega t \cdot I_m \cos(\omega t - \varphi) \]

Среднее за период значение мгновенной мощности называется активной мощностью \(P \) тока:

\[P = \frac{1}{T} \int_{0}^{T} U_m \cos \omega t \cdot I_m \cos(\omega t - \varphi) \, dt = \frac{1}{2} I_m U_m \cos \varphi = I_{\varphi} U_{\varphi} \cos \varphi \]

Множитель \(\cos \varphi \) называется коэффициентом мощности.

Так как \(I_{\varphi} = \frac{U_{\varphi}}{Z} \), и \(\cos \varphi = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2}} \), то \(P = \frac{RU_{\varphi}^2}{Z^2} = R I_{\varphi}^2 \).

Если в цепи отсутствует реактивное сопротивление \((X = 0) \), то \(\cos \varphi = 1 \) и \(P = IU \).

Если цепь содержит только реактивное сопротивление \((R = 0) \), то \(\cos \varphi = 0 \) и \(P = 0 \), какими бы большими ни были ток и напряжение.