Геометрическая оптика

Оптика — раздел физики, который изучает природу света, световые явления и взаимодействие света с веществом.

Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика является частью общего учения об электромагнитном поле.

В зависимости от круга рассматриваемых явлений оптику делают на геометрическую (лучевую), волновую (физическую), квантовую (корпускулярную).

1. Основные законы геометрической оптики.

Еще до установления природы света были известны следующие законы:

Закон прямолинейности распространения света — свет в оптически однородной среде распространяется прямолинейно.

Световой луч — линия, вдоль которой переносится световая энергия. В однородной среде лучи света представляют собой прямые линии.

Закон независимости световых пучков — эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.

Закон отражения — отраженный луч лежит в одной плоскости с падающим лучом и перпендикулярен к границе раздела двух сред в точке падения; угол отражения i'_1 равен углу падения i_1:

$$i'_1 = i_1$$

Закон преломления — луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела двух сред в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред, где n_{21} — относительный показатель преломления второй среды относительно первой, который равен отношению абсолютных показателей преломления двух сред.

Следовательно, закон преломления будет иметь вид:

Абсолютным показателем преломления среды называется величина n, равная отношению скорости электромагнитных волн в вакууме c к их фазовой скорости v в среде.

Поскольку $v = c/\sqrt{\varepsilon\mu}$, то $n = \sqrt{\varepsilon\mu}$, где ε и μ — соответственно электрическая и магнитная проницаемость среды.

2. Полное отражение.

Если свет распространяется из среды с большим показателем преломления n_1 (оптически более плотной) в среду с меньшим показателем преломления n_2 (оптически менее плотной) ($n_1 > n_2$) (например, из стекла в воздух или из воды в воздух), то
\[
\frac{\sin i_2}{\sin i_1} = \frac{n_1}{n_2} > 1
\]

Следовательно, угол преломления \(i_2 \) больше угла падения \(i_1 \). Увеличивая угол падения, при некотором предельном угле \(i_{\text{пр}} \) угол преломления окажется равным \(\pi/2 \). При углах падения \(i_1 > i_{\text{пр}} \) весь падающий свет полностью отражается.

При углах падения \(i_{\text{пр}} > i_1 > \pi/2 \) луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы.

Это явление называется полным внутренним отражением света.

Пределный угол определяется соотношением:

\[
\sin i_{\text{пр}} = \frac{n_2}{n_1} \sin \frac{\pi}{2} = \frac{n_2}{n_1} = n_2
\]

Явление полного отражения используется в призмах полного отражения и световодах.

3. Линзы.

Линзой называется прозрачное тело, ограниченное с двух сторон криволинейной поверхностью. (В частном случае одна из поверхностей может быть плоской). По внешней форме линзы делятся на:

1) двояковыпуклые;
2) плосковыпуклые;
3) двояковогнутые;
4) плосковогнутые;
5) выпукло-вогнутые.

Линза называется тонкой, если ее толщина значительно меньше, чем радиусы кривизны \(R_1 \) и \(R_2 \) обеих поверхностей. На оптических схемах линзы обычно обозначают двунаправленной стрелкой.

Радиус кривизны \(R > 0 \) для выпуклой поверхности; \(R < 0 \) для вогнутой.

Прямая проходящая через центры кривизны поверхностей линзы называется главной оптической осью.

Оптическим центром линзы (обычно обозначается \(O \)) называется точка, лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь.

Побочными оптическими осями называются прямые, проходящие через оптический центр линзы и не совпадающие с главной оптической осью.
Фокусом линзы F называется точка, лежащая на главной оптической оси, в которой пересекаются лучи \textit{параксиального} (приосевого) светового пучка, распространяющиеся параллельно главной оптической оси.

Фокальной плоскостью называется плоскость, проходящая через фокус линзы перпендикулярно ее главной оптической оси.

Фокусным расстоянием f называется расстояние между оптическим центром линзы O и ее фокусом F:

$$ f = \frac{1}{(n_2 - 1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)} $$

Формула тонкой линзы:

$$ \frac{1}{a} + \frac{1}{b} = \frac{1}{f} $$

где a и b — расстояния от линзы до предмета и его изображения. Если $a = \infty$, т.е. лучи падают на линзу параллельным пучком (а), то $b = f$. Если $b = \infty$, т.е. изображение находится в бесконечности (б), и, следовательно, лучи выходят из линзы параллельным пучком, то $a = f$.

Фокусные расстояния линзы, окруженной с обеих сторон одинаковой средой, равны.

Величина $\Phi = \frac{1}{f}$ называется \textit{оптической силой линзы}. Ее единица — \textit{диоптрия} (дптр) — оптическая сила линзы с фокусным расстоянием 1 м.

Линзы с положительной оптической силой являются \textit{собирающими}, с отрицательной — \textit{рассеивающими}.

В отличие от собирающей линзы, рассеивающая линза имеет \textit{мнимые} фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси.
4. Аберрации оптических систем.

В реальных оптических системах используются лучи отличающиеся от параксиальных, показатель преломления линз зависит от длины волны падающего света, а сам свет немонокроматичен. Искажения оптического изображения которые возникают при этом называются аберрациями.

Сферическая аберрация. Фокус S'' для лучей, более удаленных от оптической оси чем параксиальные, находится ближе, чем фокус S' параксиальных лучей. В результате изображение светящейся точки имеет вид расплывчатого пятна.

Кома. Если через оптическую систему проходит широкий пучок от точечного источника света, расположенного не на оптической оси, то получаемое изображение этой точки будет в виде освещенного пятна неправильной формы.

Точечным источником света называется источник, размерами которого можно пренебречь.

Астигматизм. Погрешность, обусловленная неоднинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка.

Дисторсия. Погрешность, при которой при больших углах падения лучей на линзу линейное увеличение для точек предмета, которые находятся на разных расстояниях от главной оптической оси, несколько различается. В результате нарушается геометрическое подобие между предметом (например, прямоугольная сетка) и его изображением (рисунок (b) — подушкообразная дисторсия, (c) — бочкообразная дисторсия).

Хроматическая аберрация. При падении на оптическую систему белого света отдельные составляющие его монохроматические лучи фокусируются в разных точках (наиболее фокусное расстояние имеют красные лучи, наименее — фиолетовые), поэтому изображение размыто и по краям окрашено.
5. Энергетические величины в фотометрии.

Фотометрия — раздел оптики, в котором рассматриваются энергетические характеристики оптического излучения в процессах его испускания, распространения и взаимодействия с веществом. При этом значительное внимание уделяется вопросам измерения интенсивности света и его источников.

Энергетические величины в фотометрии — характеризуют энергетические параметры оптического излучения без учета особенностей его воздействия на тот или иной приемник излучения.

Поток излучения \(\Phi_e \) — величина, равная отношению энергии \(W \) излучения ко времени \(t \), за которое излучение произошло (мощность излучения). Единица потока излучения — ватт (Вт).

Энергетическая светимость (излучательность) \(R_e \) — величина, равная отношению потока излучения \(\Phi_e \), испускаемого поверхностью, к площади \(S \) сечения, сквозь которую этот поток проходит (поверхностная плотность потока излучения). Единица энергетической светимости — ватт на метр в квадрате (Вт/м²).

Энергетическая сила света (сила излучения) \(I_e \) — величина, равная отношению энергетической силы света \(\Phi_e \) точечного источника к телесному углу \(\omega \), в пределах которого это излучение распространяется. Единица энергетической силы света — ватт на стерадиан (Вт/ср).

Энергетическая яркость (лучистость) \(B_e \) — величина, равная отношению энергетической силы света \(\Delta I_e \) элемента излучающей поверхности к площади \(\Delta S \) проекции этого элемента на плоскость, перпендикулярную направлению наблюдения. Единица энергетической яркости — ватт на стерадиан-метр в квадрате (Вт/(ср·м²)).

Энергетическая освещенность (облученность) \(E_e \) — характеризует величину потока излучения, падающего на единицу освещаемой поверхности. Единица энергетической освещенности — ватт на метр в квадрате (Вт/м²).

6. Световые величины в фотометрии.

Различные приемники, используемые при оптических измерениях, обладают селективностью (избирательностью). Для каждого из них характерна своя кривая чувствительности к энергии различных длин волн.

Световые измерения, являясь субъективными, отличаются от объективных, энергетических, и для них вводятся световые единицы, используемые только для видимого света.

Основной световой единицей в СИ является единица силы света \(l \) — кандела (кд) — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10¹² герц, энергетическая сила света которого в этом направлении составляет \(\gamma_{683} \) Вт/ср.

Единица светового потока \(\Phi \) (мощности оптического излучения) — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (1 лм = 1 кд·ср).
Светимость R — суммарный поток, посылаемый светящейся площадкой с площадью S. Единица светимости — люмен на метр в квадрате (лм/м2).

Яркость светящейся поверхности в некотором направлении ϕ есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению.

$B_{\phi} = \frac{I}{S \cos \phi}$.

Единица яркости — кандела на метр в квадрате (кд/м2).

Освещенность E — величина, равная отношению светового потока Φ, падающего на поверхность, к площади S этой поверхности.

$E = \frac{\Phi}{S}$.

Единица освещенности — люкс (лк): 1 лк — освещенность поверхности, на один квадратный метр которой падает световой поток в 1 лм (1 лк = 1 лм/м2).