Кинематика

1. Механика и ее структура. Модели в механике.
 Механика — это часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.
 Механическое движение — это изменение взаимного расположения тел или их частей в пространстве с течением времени.
 Обычно под механикой понимают классическую механику, в которой рассматриваются движения макроскопических тел, совершающихся со скоростями, во много раз меньшими скорости света в вакууме.
 Законы движения тел со скоростями, сравнимыми со скоростью света в вакууме, изучаются релятивистской механикой.
 Квантовая механика изучает законы движения атомов и элементарных частиц.

Разделы механики:
 Кинематика — изучает движение тел, не рассматривая причины, которые это движение обусловливают.
 Динамика — изучает законы движения тел и причины, которые вызывают или изменяют это движение.
 Статика — изучает законы равновесия системы тел.

Механика для описания движения тел в зависимости от условий конкретных задач использует разные упрощенные физические модели:
 • Материальная точка — тело, форма и размеры которого несущественны в условиях данной задачи.
 • Абсолютно твердое тело — тело, деформацией которого в условиях данной задачи можно пренебречь и расстояние между любыми двумя точками этого тела останется постоянным.
 • Абсолютно упругое тело — тело, деформация которого подчиняется закону Гука, а после прекращения внешнего силового воздействия такое тело полностью восстанавливает свои первоначальные размеры и форму.
 • Абсолютно неупругое тело — тело, полностью сохраняющее деформированное состояние после прекращения действия внешних сил.

Любое движение твердого тела можно представить как комбинацию поступательного и вращательного движений.
 Поступательное движение — это движение, при котором любая прямая, жестко связанная с телом, остается параллельной своему первоначальному положению.
 Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.
2. Система отсчета. Траектория, длина пути, вектор перемещения.

Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Тело отсчета — произвольно выбранное тело, относительно которого определяется положение остальных тел.

Система отсчета — совокупность системы координат и часов, связанных с телом отсчета.

Наиболее употребительная система координат — декартова — ортонормированный базис которой образован тремя единичными по модулю и взаимно ортогональными векторами \(\vec{i}, \vec{j}, \vec{k} \), проведенными из начала координат.

Положение произвольной точки \(M \) характеризуется радиус-вектором \(\vec{r} \), соединяющим начало координат \(O \) с точкой \(M \).

\[
\vec{r} = x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}, \quad |\vec{r}| = r = \sqrt{x^2 + y^2 + z^2}
\]

Движение материальной точки полностью определено, если декартовы координаты материальной точки заданы в зависимости от времени \(t \) (от лат. tempus):

\[
x = x(t) \quad y = y(t) \quad z = z(t)
\]

Эти уравнения называются кинематическими уравнениями движения точки. Они эквивалентны одному векторному уравнению движения точки: \(\vec{r} = \vec{r}(t) \).

Линия, описываемая движущейся материальной точкой (или телом) относительно выбранной системы отсчета называется траекторией. Уравнение траектории можно получить, исключив параметр \(t \) из кинематических уравнений.

В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Длиной пути точки называется сумма длин всех участков траектории, пройденных этой точкой за рассматриваемый промежуток времени \(\Delta s = \Delta s(t) \). Длина пути — скалярная функция времени.

Вектор перемещения \(\Delta \vec{r} = \vec{r} - \vec{r}_0 \) — вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

\[
\Delta \vec{r} = \vec{r} - \vec{r}_0 = \vec{r}(t) - \vec{r}(t_0) = \Delta x \cdot \vec{i} + \Delta y \cdot \vec{j} + \Delta z \cdot \vec{k}
\]
В пределе \(\Delta t \to 0 \) длина пути по хорде \(ds \) и длина хорды \(\Delta r = |\Delta \vec{r}| \) будут все меньше отличаться: \(ds = |d\vec{r}| = dr \).

3. Скорость

Скорость — это векторная величина, которая определяет как быстро движется, так и его направление в данный момент времени.

Вектором средней скорости \(\bar{v} \) (от лат. *velocitas*) за интервал времени \(\Delta t \) называется отношение приращения \(\Delta \vec{r} \) радиуса-вектора точки к промежутку времени \(\Delta t \):

\[
\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t}
\]

Направление вектора средней скорости совпадает с направлением \(\Delta \vec{r} \).

Единица скорости — м/с.

Мгновенная скорость — векторная величина, равная первой производной по времени от радиуса-вектора \(\vec{r} \) рассматриваемой точки:

\[
\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \dot{\vec{r}}
\]

Вектор мгновенной скорости направлен по касательной к траектории в сторону движения. Модуль мгновенной скорости (скалярная величина) равен первой производной пути по времени.

\[
v = |\vec{v}| = \lim_{\Delta t \to 0} \frac{|\Delta \vec{r}|}{\Delta t} = \lim_{\Delta t \to 0} \frac{ds}{dt} = \frac{ds}{dt}
\]

(Отсюда: \(ds = v \, dt \).)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. Поэтому можно ввести скалярную величину \(\langle v \rangle \) — среднюю скорость неравномерного движения (другое название — средняя путьея скорость).

Длина пути \(s \), пройденного точкой за промежуток времени от \(t_1 \) до \(t_2 \), задается интегралом:

\[
s = \int_{t_1}^{t_2} v(t) \, dt
\]

При прямоолинейном движении точка направление вектора скорости сохраняется неизменным.

Движение точки называется равномерным, если модуль ее скорости не изменяется с течением времени \((v = const) \), для него \(s = v \cdot \Delta t \).

Если модуль скорости увеличивается с течением времени, то движение называется ускоренным, если же он убывает с течением времени, то движение называется замедленным.

4. Ускорение.

Ускорение \(\vec{a} \) (от лат. *acceleration*) — это векторная величина, характеризующая быстроту изменения скорости по модулю и направлению.

Среднее ускорение в интервале времени \(\Delta t \) — векторная величина, равная отношению изменения скорости \(\Delta \vec{v} \) к интервалу времени \(\Delta t \):

\[
\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}
\]
Моментальное ускорение материальной точки — векторная величина, равная первой производной по времени скорости рассматриваемой точки (второй производной по времени от радиуса-вектора этой же точки):

$$
\ddot{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt} = \dot{\vec{v}} = \frac{d^2 \vec{r}}{dt^2} = \ddot{\vec{r}}
$$

Единица ускорения — \(\text{m/s}^2 \).

В общем случае плоского криволинейного движения вектор ускорения удобно представить в виде суммы двух проекций:

$$
\vec{a} = \vec{a}_n + \vec{a}_t
$$

Тангенциальное ускорение \(\vec{a}_t \) характеризует быстроту изменения скорости по модулю (рис.(А)), его величина:

$$
a_t = \frac{d \vec{v}}{dt}
$$

Нормальное (центробежное) ускорение \(\vec{a}_n \) направлено по нормали к траектории к центру ее кривизны \(O \) и характеризует быстроту изменения направления вектора скорости точки. Величина нормального ускорения \(a_n \) связана со скоростью \(v \) движения по кругу и величиной радиуса \(R \) (рис.(Б)). Пусть \(|\vec{v}_1| = |\vec{v}_2| = v \). Тогда для \(\alpha \to 0 \):

$$
\Delta \vec{v}_n = v \sin \alpha \approx v \cdot \alpha, \ \Delta s = v \cdot \Delta t \approx R \cdot \alpha \Rightarrow \alpha \approx (v \cdot \Delta t)/R, \text{ отсюда:}
$$

$$
\Delta \vec{v}_n = \frac{v^2}{R} \Delta t \Rightarrow \frac{\Delta \vec{v}_n}{\Delta t} = \frac{v^2}{R} \Rightarrow a_n = \frac{d \vec{v}_n}{dt} = \frac{v^2}{R}
$$

Величина полного ускорения (рис.(C)):

$$
a = \sqrt{a_n^2 + a_t^2}.$$
Виды движения:
1) $a_1 = 0, \quad a_n = 0$ — прямолинейное равномерное движение: $\vec{a} = 0$.
2) $a_1 = a = \text{const}, \quad a_n = 0$ — прямолинейное равномерное (равноускоренное) движение. Если $t_0 = 0$, то
$$a_1 = a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0} = \frac{v - v_0}{t}; \quad v = v_0 + a \cdot t; \quad s = \int_0^t (v_0 + at) dt = v_0 t + \frac{at^2}{2}$$
3) $a_1 = 0, \quad a_n = \text{const} = \frac{v^2}{R}$ — равномерное движение по окружности.
4) $a_1 \neq 0, \quad a_n \neq 0$ — криволинейное равномерное движение.

5. Кинематика вращательного движения.
При описании вращательного движения удобно пользоваться полярными координатами R и φ, где R — радиус — расстояние от полюса (центра вращения) до материальной точки, а φ — полярный угол (угол поворота).

Элементарные повороты (обозначаются $d\varphi$ или $d\vec{\varphi}$) можно рассматривать как псевдовекторы.

Угловое перемещение $d\varphi$ — векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступательного движения правого винта.

Угловая скорость: $\omega = \frac{d\varphi}{dt} = \dot{\varphi}$. Угловое ускорение: $\vec{\beta} = \frac{d\omega}{dt} = \ddot{\omega} = \frac{d^2\varphi}{dt^2} = \ddot{\varphi}$

Вектор $\vec{\omega}$ направлен вдоль оси вращения так же как и вектор $d\vec{\varphi}$, т.е. по правилу правого винта. Вектор $\vec{\beta}$ направлен вдоль оси вращения в сторону вектора приращения угловой скорости (при ускоренном вращении вектор $\vec{\beta}$ сонаправлен вектору $\vec{\omega}$, при замедленном — противонаправлен ему).

Единицы угловой скорости и углового ускорения — рад/с и рад/с².
Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением: $v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{R \cdot \Delta \varphi}{\Delta t} = R \cdot \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \omega R$.
В векторном виде формулу для линейной скорости можно написать как векторное произведение:

\[\mathbf{v} = [\mathbf{\vartheta}, \mathbf{R}] \].

По определению векторного произведения (см. стр. 1-29) его модуль равен \(|\mathbf{v}| = \omega R \sin \alpha \), где \(\alpha \) — угол между векторами \(\mathbf{\vartheta} \) и \(\mathbf{R} \), а направление совпадает с направлением поступательного движения правого винта при его вращении от \(\mathbf{\vartheta} \) к \(\mathbf{R} \).

При равномерном вращении:

\[\omega = \frac{d\varphi}{dt} = \text{const}, \]
следовательно \(\varphi = \omega \cdot t \).

Равномерное вращение можно характеризовать периодом вращения \(T \) — временем, за которое точка совершает один полный оборот, \(2\pi = \omega \cdot T \).

Частота вращения — число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени:

\[n = \frac{1}{T} = \frac{\omega}{2\pi}, \]
\[\omega = 2\pi \cdot n \]

Единица частоты вращения — герц (Гц).

При равноускоренном вращательном движении \(\beta = \text{const} \):

\[\omega = \omega_0 + \beta \cdot t; \]
\[\varphi = \omega_0 \cdot t + \frac{\beta \cdot t^2}{2}; \]
\[a_n = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R; \]

\[a_z = \frac{dv}{dt} = \frac{d(\omega R)}{dt} = R \frac{d\omega}{dt} = R \beta; \]
\[s = \int v dt = \int \omega R dt = R \int \varphi \frac{d\varphi}{dt} dt = R \varphi; \]
\[a_r = R \beta; \]

\[a_n = R \omega^2 \]